Alvaston Junior Academy Mental Calculation Policy

- This policy has been produced to support teachers in ensuring progression in mental mathematics methods and to ensure that pupils develop confidence and mental fluency with whole numbers, counting and place value.
- Teachers are expected to revisit methods taught in previous years to ensure children are secure and ready to move onto new methods for mental calculations.
- The document is written with the 'end-of-year' expectations in mind.
- Teachers are to teach mental calculation strategies during arithmetic time in the first week of every half term. In addition to this week of explicit teaching time, mental calculation strategies should be modelled when applicable e.g in arithmetic /main teaching.
- This document can be used to aid differentiation and interventions to close the gaps in children's learning.

	Addition	ALL Children MUST	Subtraction	ALL Children MUST	Multiplication	ALL Children MUST	Division	ALL Children MUST
Υ 3	Know pairs with each total to 20 e.g. $2 + 6 = 8$, $12 + 6 = 18$, $7 + 8 = 15$ Know pairs of multiples of 10 with a total of 100 Add any two 2-digit numbers by counting on in 10s and 1s or by using partitioning Add multiples and near multiples of 10 and 100 Perform place-value additions without a struggle e.g. $300 + 8 + 50 = 358$ Use place value and number facts to add a 1-digit or 2-digit number to a 3-digit number e.g. $104 + 56$ is 160 since $104 + 50 =$ 154 and $6 + 4 = 10676 + 8$ is 684 since $8 = 4 + 4$ and 76 + 4 + 4 = 84 Add pairs of 'friendly' 3-digit numbers e.g. $320 + 450$ Begin to add amounts of money using partitioning	Know pairs of numbers which make each total up to 10, and which total 20 Add two 2-digit numbers by counting on in 10s and 1s e.g. 56 + 35 is 56 + 30 and then add the 5 Understand simple place-value additions e.g. 200 + 40 + 5 = 245 Use place value to add multiples of 10 or 100	Know pairs with each total to 20 e.g. $8 - 2 = 6$ e.g. $18 - 6 = 12$ e.g. $15 - 8 = 7$ Subtract any two 2-digit numbers Perform place-value subtractions without a struggle e.g. $536 - 30 = 506$ Subtract 3-digit numbers from numbers > 100 by counting up e.g. $143 - 126$ is done by starting at 126. Then add 4 (130), then add 10 (140), then add 3, making the difference a total of 17 Subtract multiples and near multiples of 10 and 100 Subtract, when appropriate, by counting back or taking away, using place value and number facts	Know pairs of numbers which make each total up to 10, and which total 20 20 Count up to subtract 2-digit numbers e.g. 72 – 47 Subtract multiples of 5 from 100 by counting up e.g. 100 – 35 Subtract multiples of 10 and	Know by heart all the multiplication facts in the $\times 2, \times 3, \times 4, \times 5, \times 8$ and $\times 10$ tables Multiply whole numbers by 10 and 100 Recognise that multiplication is commutative Use place value and number facts in mental multiplication e.g. 30×5 is 15×10 Partition teen numbers to multiply by a 1-digit number e.g. 3×14 as 3×10 and 3×4 Double numbers up to 50	know by heart the x2, x3, x4 x5 x 8 and x10 tables Double given tables facts to get others Double numbers up to 25 and multiples of 5 to 50	Know by heart all the division facts derived from the ×2, ×3, ×4, ×5, ×8 and ×10 tables Divide whole numbers by 10 or 100 to give whole number answers Recognise that division is not commutative Use place value and number facts in mental division e.g. $84 \div 4$ is half of 42 Divide larger numbers mentally by subtracting the 10th multiple as appropriate, including those with remainders e.g. $57 \div 3$ is $10 + 9$ as $10 \times 3 = 30$ and $9 \times 3 = 27$ Halve even numbers to 100, halve odd numbers to 20	know by heart the division facts derived from the ×2, ×3, ×4 ×5 × 8and ×10 tables Halve even numbers up to 50 and multiples of 10 to 100 Perform divisions within the tables including those with remainders e.g. 38 ÷ 5
Υ 4	Add any two 2-digit numbers by partitioning or counting on Know by heart/quickly derive number bonds to 100 and to £1 Add to the next 100, £1 and whole number e.g. 234 + 66 = 300 e.g. 3·4 + 0·6 = 4 Perform place-value additions without a struggle e.g. 300 + 8 + 50 + 4000 = 4358 Add multiples and near multiples of 10, 100 and 1000 Add £1, 10p, 1p to amounts of money Use place value and number facts to add 1-, 2-, 3- and 4-digit numbers where a mental calculation is appropriate e.g. 4004 + 156 by knowing that 6 + 4 = 10 and that 4004 + 150 = 4154 so the total is 4160	Add any 2-digit numbers by partitioning or counting on Number bonds to 20 Know pairs of multiples of 10 with a total of 100 Add 'friendly' larger numbers using knowledge of place value and number facts	Subtract any two 2-digit numbers Know by heart/quickly derive number bonds to 100 Perform place-value subtractions without a struggle e.g. 4736 – 706 = 4030 Subtract multiples and near multiples of 10, 100, 1000, £1 and 10p Subtract multiples of 0·1 Subtract by counting up e.g. 503 – 368 is done by adding 368 + 2 + 30 + 100 + 3 (so we added 135) Subtract, when appropriate, by counting back or taking away, using place value and number facts Subtract £1, 10p, 1p from amounts of money Find change from £10, £20 and £50	Use counting up with confidence to solve most subtractions, including finding complements to multiples of 100 e.g. $512 - 287$ e.g. $67 + _ = 100$	Know by heart all the multiplication facts up to 12 × 12 Recognise factors up to 12 of 2-digit numbers Multiply whole numbers and 1-place decimals by 10, 100, 1000 Multiply multiples of 10, 100 and 1000 by 1-digit numbers e.g. 300×6 e.g. 4000×8 Use understanding of place value and number facts in mental multiplication e.g. 36×5 is half of 36×10 e.g. $50 \times 60 = 3000$ Partition 2-digit numbers to multiply by a 1-digit number mentally e.g. 4×24 as 4×20 and 4×4 Multiply near multiples by rounding e.g. 33×19 as $(33 \times 20) - 33$ Find doubles to double 100 and beyond using partitioning	Know by heart multiplication tables up to 12 × 12 Multiply whole numbers by 10 and 100	Know by heart all the division facts up to 144 ÷ 12 Divide whole numbers by 10, 100, to give whole number answers or answers with 1 decimal place Divide multiples of 100 by 1-digit numbers using division facts e.g. $3200 \div 8 = 400$ Use place value and number facts in mental division e.g. $245 \div 20$ is half of $245 \div 10$ Divide larger numbers mentally by subtracting the 10th or 20th multiple as appropriate e.g. $156 \div 6$ is $20 + 6$ as $20 \times 6 =$ 120 and $6 \times 6 = 36$ Find halves of even numbers to 200 and beyond using partitioning Begin to halve amounts of money e.g. half of £52-40 is £26-20	Know by heart all the division facts up 144 ÷ 12 Divide whole numbers by 10 and 100 to give whole number answers F

	Addition	ALL Children MUST	Subtraction	ALL Children MUST	Multiplication	ALL Children MUST	Division	ALL Children MUST
Υ5	Know number bonds to 1 and to the next whole number Add to the next 10 from a decimal number e.g. $13.6 + 6.4 = 20$ Add numbers with 2 significant digits only, using mental strategies e.g. $3.4 + 4.8$ e.g. $23 000 + 47 000$ Add 1- or 2-digit multiples of 10, 100, 1000, 10 000 and 100 000 e.g. $8000 + 700 000$ Add near multiples of 10, 100, 1000, 10 000 and 100 000 to other numbers e.g. $82 472 + 30 004$ Add decimal numbers which are near multiples of 1 or 10, including money e.g. $634 + 1.99$ e.g. $f34.59 + f19.95$ Use place value and number facts to add two or more 'friendly' numbers, including money and decimals e.g. $3.8 + 6 + 4 + 7$ e.g. $0.6 + 0.7 + 0.4$ e.g. $2056 + 44$	Add numbers with only 2 digits which are not zeros e.g. 3.4 + 5.8 Derive swiftly and without any difficulty number bonds to 100 Add "friendly" large numbers using knowledge of place value and number facts	Subtract numbers with 2 significant digits only, using mental strategies e.g. $6\cdot 2 - 4\cdot 5$ e.g. $72\ 000 - 47\ 000$ Subtract 1- or 2-digit multiples of 10, 100, 1000, 10\ 000 and 100\ 000 e.g. $8000 - 3000$ e.g. $60\ 000 - 200\ 000$ Subtract 1- or 2-digit near multiples of 10, 100, 1000, 10\ 000 and 100\ 000 from other numbers e.g. $82\ 472 - 30\ 004$ Subtract decimal numbers which are near multiples of 1 or 10, including money e.g. $6\cdot34 - 1\cdot99$ e.g. $6\cdot34 - 1\cdot99$ e.g. $6\cdot34 - 1\cdot99$ Use counting up subtraction, with knowledge of number bonds to 10, 100 or £1, as a strategy to perform mental subtraction e.g. $f10 - f3\cdot45$ e.g. $1000 - 782$ Recognise fraction complements to 1 and to the next whole number e.g. $1^2/_5 + ^3/_5 = 2$	Derive swiftly and without difficulty number bonds to 100 Use counting up with confidence to solve most subtractions, including finding complements to multiples of 1000 e.g. 3000 – 2387	Know by heart all the multiplication facts up to 12×12 Multiply whole numbers and 1- and 2-place decimals by 10, 100, 1000, 1000 Use knowledge of factors and multiples in multiplication e.g. 43×6 is double 43×3 e.g. 28×50 is $\frac{1}{2}$ of $28 \times 100 = 1400$ Use knowledge of place value and rounding in mental multiplication e.g. 67×199 as $67 \times 200 - 67$ Use doubling and halving as a strategy in mental multiplication e.g. 58×5 is half of 58×10 e.g. 34×4 is 34 doubled twice Partition 2-digit numbers, including decimals, to multiply by a 1-digit number mentally e.g. $6\cdot 3 \times 7$ as 6×20 (120) plus 6×7 (42) e.g. $6\cdot 3 \times 7$ as 6×7 (42) plus $0\cdot 3 \times 7$ (2·1) Double amounts of money by partitioning e.g. $f37 \cdot 45$ doubled is $f37$ doubled (£74) plus $45p$ doubled (90p) giving a total of £74·90	now multiplication tables to 12 × 12 Aultiply whole numbers and 1-place decimals by 10, 100 and 1000 ise knowledge of factors as aids to mental multiplication i.g. 13×6 is <i>double</i> 13 × 3 i.g. 23×5 is $1/_2$ of 23×10	Know by heart all the division facts up to 144 \div 12 Divide whole numbers by 10, 100, 1000, 10 000 to give whole number answers or answers with 1, 2 or 3 decimal places Use doubling and halving as mental division strategies e.g. $34 \div 5$ is $(34 \div 10) \times 2$ Use knowledge of multiples and factors, as well as tests for divisibility, in mental division e.g. $246 \div 6$ is $123 \div 3$ e.g. <i>We know that</i> 525 <i>divides by</i> 25 <i>and by</i> 3 Halve amounts of money by partitioning e.g. $1/_2$ of $275 \cdot 40 = 1/_2$ of 275 ($237 \cdot 50$) <i>plus</i> <i>half</i> of 40p (20p) which is $237 \cdot 70$ Divide larger numbers mentally by subtracting the 10th or 100th multiple as appropriate e.g. $96 \div 6$ is $10 + 6$, as $10 \times 6 = 60$ and $6 \times 6 = 36$ e.g. $312 \div 3$ is $100 + 4$ as $100 \times 3 = 300$ and $4 \times 3 = 12$ Know tests for divisibility by 2, 3, 4, 5, 6, 9 and 25 Know square numbers and cube numbers Reduce fractions to their simplest form	rnow by heart division facts up to 144 ÷ 12 jivide whole numbers by 10, 100 or 1000 to give answers with up to 1 decimal liace Jse doubling and halving as mental division strategies
Υ 6	Know by heart number bonds to 100 and use these to derive related facts e.g. 3:46 + 0:54 Derive, quickly and without difficulty, number bonds to 1000 Add small and large whole numbers where the use of place value or number facts makes the calculation do-able mentally e.g. 34 000 + 8000 Add multiples of powers of 10 and near multiples of the same e.g. 6345 + 199 Add negative numbers in a context such as temperature where the numbers make sense Add two 1-place decimal numbers or two 2-place decimal numbers less than 1 e.g. 4:5 + 6:3 e.g. 0:74 + 0:33 Add positive numbers to negative numbers e.g. <i>Calculate a rise in temperature or</i> <i>continue a sequence beginning with a</i> <i>negative number</i>	Derive, swiftly and without difficulty, number bonds to 100 Use place value and number facts to add 'friendly' large or decimal numbers e.g. 34 + 6-6 e.g. 26 000 + 54 000 Solve multi step problems including all four operations.	Use number bonds to 100 to perform mental subtraction of any pair of integers by complementary addition e.g. 1000 – 654 as 46 + 300 in our heads Use number bonds to 1 and 10 to perform mental subtraction of any pair of 1-place or 2-place decimal numbers using complementary addition and including money e.g. 10 – 3.65 as 0.35 + 6 e.g. $f50 - f34.29$ as $71p + f15$ Use number facts and place value to perform mental subtraction of large numbers or decimal numbers with up to 2 places e.g. 4.67 900 – 3005 e.g. $4.63 - 1.02$ Subtract multiples of powers of 10 and near multiples of the same Subtract negative numbers in a context such as temperature where the numbers make sense	Use number bonds to 100 to perform mental subtraction of numbers up to 1000 by complementary addition e.g. 1000 – 654 os 46 + 300 in our heads Use complementary addition for subtraction of integers up to 10 000 e.g. 2504 – 1878	Know by heart all the multiplication facts up to 12 × 12 Multiply whole numbers and decimals with up to 3 places by 10, 100 or 1000 e.g. 234 × 1000 = 234 000 e.g. 0.23 × 1000 = 230 Identify common factors, common multiples and prime numbers and use factors in mental multiplication e.g. 326 × 6 is 652 × 3 which is 1956 Use place value and number facts in mental multiplication e.g. 4000 × 6 = 24 000 e.g. 0.03 × 6 = 0.18 Use doubling and halving as mental multiplication strategies, including to multiply by 2, 4, 8, 5, 20, 50 and 25 e.g. 28 × 25 is a quarter of 28 × 100 = 700 Use rounding in mental multiplication e.g. 34 × 19 as (34 × 20) – 34 Multiply 1- and 2-place decimals by numbers up to and including 10 using place value and partitioning e.g. 3:6 × 4 is 12 + 2:4 e.g. 2:53 × 3 is 6 + 1:5 + 0:09 Double decimal numbers with up to 2 places using partitioning e.g. 3:6-73 doubled is double 36 (72) plus double 0.73 (1:46)	Know by heart all the multiplication facts up to 12 × 12 Multiply whole numbers and 1- and 2-place decimals by 10, 100 and 1000 Multi step problems that require mixed operations	Know by heart all the division facts up to 144 ÷ 12 Divide whole numbers by powers of 10 to give whole number answers or answers with up to 3 decimal places Identify common factors, common multiples and primes numbers and use factors in mental division e.g. $438 \div 6$ is $219 \div 3$ which is 73 Use tests for divisibility to aid mental calculation Use doubling and halving as mental division strategies, for example to divide by 2, 4, 8, 5, 20 and 25 e.g. $628 \div 8$ is halved three times: 314 , 157 , $78 \cdot 5$ Divide 1- and 2-place decimals by numbers up to and including 10 using place value e.g. $2.4 \div 6 = 0.4$ e.g. $0.65 \div 5 = 0.13$ e.g. $t6\cdot33 \Rightarrow 12\cdot11$ Halve decimal numbers with up to 2 places using partitioning e.g. Half of $36\cdot86$ is half of 36 (18) plus half of $0\cdot86$ (0-43) Know and use equivalence between simple fractions, decimals and percentages, including in different contexts Recognise a given ratio and reduce a given ratio to is lowest terms	Know by heart division facts up to 144 ÷ 12 Divide whole numbers by 10, 100 or 1000 to give answers with up to 1 decimal place Use doubling and halving as mental division strategies Multi step problems that require mixed operations

