Alvaston Junior Academy Mental Calculation Policy

- This policy has been produced to support teachers in ensuring progression in mental mathematics methods and to ensure that pupils develop confidence and mental fluency with whole numbers, counting and place value.
- Teachers are expected to revisit methods taught in previous years to ensure children are secure and ready to move onto new methods for mental calculations.
- The document is written with the 'end-of-year' expectations in mind.
- Teachers are to teach mental calculation strategies during arithmetic time in the first week of every half term. In addition to this week of explicit teaching time, mental calculation strategies should be modelled when applicable e.g in arithmetic /main teaching.
- This document can be used to aid differentiation and interventions to close the gaps in children's learning.

	Addition		Subtraction		Multiplication	光		Division	
m	Know pairs with each total to 20 e.g. $2+6=8,12+6=18,7+8=15$ Know pairs of multiples of 10 with a total of 100 Add any two 2-digit numbers by counting on in 10s and 1s or by using partitioning Add multiples and near multiples of 10 and 100 Perform place-value additions without a struggle e.g. $300+8+50=358$ Use place value and number facts to add a 1-digit or 2-digit number to a 3-digit number e.g. $104+56$ is 160 since $104+50=$ 154 and $6+4=10$ $676+8$ is 684 since $8=4+4$ and $76+4+4=84$ Add pairs of 'friendly' 3-digit numbers e.g. $320+450$ Begin to add amounts of money using partitioning		Know pairs with each total to 20 e.g. $8-2=6$ e.g. $18-6=12$ e.g. $15-8=7$ Subtract any two 2-digit numbers Perform place-value subtractions without a struggle e.g. $536-30=506$ Subtract 3-digit numbers from numbers >100 by counting up e.g. 143-126 is done by starting at 126. Then add 4 (130), then add 10 (140), then add 3, making the difference a total of 17 Subtract multiples and near multiples of 10 and 100 Subtract, when appropriate, by counting back or taking away, using place value and number facts		Know by heart all the multiplication facts in the $\times 2, \times 3, \times 4, \times 5, \times 8$ and $\times 10$ tables Multiply whole numbers by 10 and 100 Recognise that multiplication is commutative Use place value and number facts in mental multiplication e.g. 30×5 is 15×10 Partition teen numbers to multiply by a 1-digit number e.g. 3×14 as 3×10 and 3×4 Double numbers up to 50			Know by heart all the division facts derived from the $\times 2, \times 3, \times 4, \times 5, \times 8$ and $\times 10$ tables Divide whole numbers by 10 or 100 to give whole number answers Recognise that division is not commutative Use place value and number facts in mental division e.g. $84 \div 4$ is half of 42 Divide larger numbers mentally by subtracting the 10th multiple as appropriate, including those with remainders $\text { e.g. } 57 \div 3 \text { is } 10+9 \text { as } 10 \times 3=30$ and $9 \times 3=27$ Halve even numbers to 100 , halve odd numbers to 20	
	Add any two 2-digit numbers by partitioning or counting on Know by heart/quickly derive number bonds to 100 and to $£ 1$ Add to the next 100, $£ 1$ and whole number e.g. $234+66=300$ e.g. $3 \cdot 4+0 \cdot 6=4$ Perform place-value additions without a struggle e.g. $300+8+50+4000=4358$ Add multiples and near multiples of 10,100 and 1000 Add $£ 1,10$ p, 1 p to amounts of money Use place value and number facts to add 1-, 2-, 3 - and 4-digit numbers where a mental calculation is appropriate e.g. $4004+156$ by knowing that $6+4$ $=10$ and that $4004+150=4154$ so the total is 4160		Subtract any two 2-digit numbers Know by heart/quickly derive number bonds to 100 Perform place-value subtractions without a struggle e.g. $4736-706=4030$ Subtract multiples and near multiples of $10,100,1000, £ 1$ and 10 p Subtract multiples of 0.1 Subtract by counting up e.g. 503-368 is done by adding $368+2+30+100+3$ (so we added 135) Subtract, when appropriate, by counting back or taking away, using place value and number facts Subtract $£ 1,10$ p, 1p from amounts of money Find change from $£ 10, £ 20$ and $£ 50$		Know by heart all the multiplication facts up to 12×12 Recognise factors up to 12 of 2-digit numbers Multiply whole numbers and 1-place decimals by 10, 100, 1000 Multiply multiples of 10,100 and 1000 by 1-digit numbers e.g. 300×6 e.g. 4000×8 Use understanding of place value and number facts in mental multiplication e.g. 36×5 is half of 36×10 e.g. $50 \times 60=3000$ Partition 2-digit numbers to multiply by a 1-digit number mentally e.g. 4×24 as 4×20 and 4×4 Multiply near multiples by rounding e.g. 33×19 as $(33 \times 20)-33$ Find doubles to double 100 and beyond using partitioning			Know by heart all the division facts up to $144 \div 12$ Divide whole numbers by 10,100 , to give whole number answers or answers with 1 decimal place Divide multiples of 100 by 1-digit numbers using division facts e.g. $3200 \div 8=400$ Use place value and number facts in mental division e.g. $245 \div 20$ is half of $245 \div 10$ Divide larger numbers mentally by subtracting the 10th or 20th multiple as appropriate e.g. $156 \div 6$ is $20+6$ as $20 \times 6=$ 120 and $6 \times 6=36$ Find halves of even numbers to 200 and beyond using partitioning Begin to halve amounts of money e.g. half of $£ 52.40$ is $£ 26.20$	

	Addition		Subtraction		Multiplication		Division	
$\stackrel{n}{>}$	Know number bonds to 1 and to the next whole number Add to the next 10 from a decimal number e.g. $13 \cdot 6+6 \cdot 4=20$ Add numbers with 2 significant digits only, using mental strategies e.g. $3 \cdot 4+4 \cdot 8$ e.g. $23000+47000$ Add 1- or 2-digit multiples of 10, 100, 1000, 10000 and 100000 e.g. $8000+7000$ e.g. $600000+700000$ Add near multiples of $10,100,1000,10000$ and 100000 to other numbers e.g. $82472+30004$ Add decimal numbers which are near multiples of 1 or 10 , including money e.g. $6.34+1.99$ e.g. $£ 34 \cdot 59+£ 19.95$ Use place value and number facts to add two or more 'friendly' numbers, including money and decimals e.g. $3+8+6+4+7$ e.g. $0.6+0.7+0.4$ e.g. $2056+44$		Subtract numbers with 2 significant digits only, using mental strategies e.g. 6.2-4.5 e.g. 72000-47000 Subtract 1- or 2-digit multiples of 10, 100, 1000, 10000 and 100000 e.g. $8000-3000$ e.g. $60000-200000$ Subtract 1- or 2-digit near multiples of $10,100,1000,10000$ and 100000 from other numbers e.g. $82472-30004$ Subtract decimal numbers which are near multiples of 1 or 10 , including money e.g. 6.34-1.99 e.g. $£ 34.59-£ 19.95$ Use counting up subtraction, with knowledge of number bonds to 10,100 or $£ 1$, as a strategy to perform mental subtraction e.g. $£ 10-£ 3.45$ e.g. 1000-782 Recognise fraction complements to 1 and to the next whole number e.g. $1^{2} / 5+3 / 5=2$		Know by heart all the multiplication facts up to 12×12 Multiply whole numbers and 1-and 2-place decimals by $10,100,1000,10000$ Use knowledge of factors and multiples in multiplication e.g. 43×6 is double 43×3 e.g. 28×50 is $1 / 2$ of $28 \times 100=1400$ Use knowledge of place value and rounding in mental multiplication e.g. 67×199 as $67 \times 200-67$ Use doubling and halving as a strategy in mental multiplication e.g. 58×5 is half of 58×10 e.g. 34×4 is 34 doubled twice Partition 2-digit numbers, including decimals, to multiply by a 1 -digit number mentally e.g. 6×27 as $6 \times 20(120)$ plus $6 \times 7(42)$ e.g. 6.3×7 as 6×7 (42) plus 0.3×7 (2.1) Double amounts of money by partitioning e.g. $£ 37.45$ doubled is $£ 37$ doubled ($£ 74$) plus 45 p doubled (90p) giving a total of $£ 74.90$		Know by heart all the division facts up to 144 $\div 12$ Divide whole numbers by $10,100,1000$, 10000 to give whole number answers or answers with 1,2 or 3 decimal places Use doubling and halving as mental division strategies e.g. $34 \div 5$ is $(34 \div 10) \times 2$ Use knowledge of multiples and factors, as well as tests for divisibility, in mental division e.g. $246 \div 6$ is $123 \div 3$ e.g. We know that 525 divides by 25 and by 3 Halve amounts of money by partitioning e.g. $1 / 2$ of $£ 75 \cdot 40=1 / 2$ of $£ 75$ ($£ 37.50$) plus half of 40 p (20p) which is $£ 37.70$ Divide larger numbers mentally by subtracting the 10th or 100th multiple as appropriate e.g. $96 \div 6$ is $10+6$, as $10 \times 6=60$ and $6 \times 6=$ 36 e.g. $312 \div 3$ is $100+4$ as $100 \times 3=300$ and 4 $\times 3=12$ Know tests for divisibility by 2, 3, 4, 5, 6, 9 and 25 Know square numbers and cube numbers Reduce fractions to their simplest form	
$\underset{\succ}{\bullet}$	Know by heart number bonds to 100 and use these to derive related facts e.g. $3.46+0.54$ Derive, quickly and without difficulty, number bonds to 1000 Add small and large whole numbers where the use of place value or number facts makes the calculation do-able mentally e.g. $34000+8000$ Add multiples of powers of 10 and near multiples of the same e.g. $6345+199$ Add negative numbers in a context such as temperature where the numbers make sense Add two 1-place decimal numbers or two 2-place decimal numbers less than 1 e.g. $4 \cdot 5+6 \cdot 3$ e.g. $0.74+0.33$ Add positive numbers to negative numbers e.g. Calculate a rise in temperature or continue a sequence beginning with a negative number		Use number bonds to 100 to perform mental subtraction of any pair of integers by complementary addition e.g. $1000-654$ as $46+300$ in our heads Use number bonds to 1 and 10 to perform mental subtraction of any pair of 1-place or 2-place decimal numbers using complementary addition and including money e.g. $10-3.65$ as $0.35+6$ e.g. $£ 50-£ 34 \cdot 29$ as $71 p+£ 15$ Use number facts and place value to perform mental subtraction of large numbers or decimal numbers with up to 2 places e.g. $467900-3005$ e.g. $4 \cdot 63-1.02$ Subtract multiples of powers of 10 and near multiples of the same Subtract negative numbers in a context such as temperature where the numbers make sense		Know by heart all the multiplication facts up to 12×12 Multiply whole numbers and decimals with up to 3 places by 10, 100 or 1000 e.g. $234 \times 1000=234000$ e.g. $0.23 \times 1000=230$ Identify common factors, common multiples and prime numbers and use factors in mental multiplication e.g. 326×6 is 652×3 which is 1956 Use place value and number facts in mental multiplication e.g. $4000 \times 6=24000$ e.g. $0.03 \times 6=0.18$ Use doubling and halving as mental multiplication strategies, including to multiply by $2,4,8,5,20$, 50 and 25 e.g. 28×25 is a quarter of $28 \times 100=700$ Use rounding in mental multiplication e.g. 34×19 as $(34 \times 20)-34$ Multiply 1-and 2-place decimals by numbers up to and including 10 using place value and partitioning e.g. $3 \cdot 6 \times 4$ is $12+2 \cdot 4$ e.g. 2.53×3 is $6+1.5+0.09$ Double decimal numbers with up to 2 places using partitioning e.g. 36.73 doubled is double 36 (72) plus double 0.73 (1.46)		Know by heart all the division facts up to $144 \div 12$ Divide whole numbers by powers of 10 to give whole number answers or answers with up to 3 decimal places Identify common factors, common multiples and primes numbers and use factors in mental division e.g. $438 \div 6$ is $219 \div 3$ which is 73 Use tests for divisibility to aid mental calculation Use doubling and halving as mental division strategies, for example to divide by $2,4,8,5$, 20 and 25 e.g. $628 \div 8$ is halved three times: 314, 157, 78.5 Divide 1-and 2-place decimals by numbers up to and including 10 using place value e.g. $2 \cdot 4 \div 6=0 \cdot 4$ e.g. $0.65 \div 5=0.13$ e.g. $£ 6 \cdot 33 \div 3=£ 2 \cdot 11$ Halve decimal numbers with up to 2 places using partitioning e.g. Half of 36.86 is half of 36 (18) plus half of 0.86 (0.43) Know and use equivalence between simple fractions, decimals and percentages, including in different contexts Recognise a given ratio and reduce a given ratio to its lowest terms	

