Written Calculation Policy

- This policy has been produced to support teachers in ensuring progression in written mathematics methods and to ensure that pupils develop their ability to solve a wider range of problems, including increasingly complex properties of numbers and arithmetic, and problems demanding efficient written methods of calculation.
- Teachers are expected to revisit methods taught in previous years to ensure children are secure and ready to move onto new methods for written calculations.
- The document is written as a guide to aid end of year expectations, but pupils should still have the opportunity to use their preferred strategy
- Teachers are to plan regular revisits to teach standalone skills as well as planning for opportunities for the application of these methods across all areas of mathematics (and other curriculum areas when appropriate)
- This document can be used to aid differentiation and interventions to close the gaps in children's learning.

	Addition	Subtraction	Multiplication	Division
$\frac{m}{>}$	Consolidate adding single and double digits using concrete and pictorial $4+2=6$ 日 $+B=6$ Number line Begin to use compact column addition to add numbers with 3 digits $(5+2)$ (expanded method might help) Begin to add like fractions $\text { e.g. } 3 / 8+1 / 8+1 / 8$ Recognise fractions that add to 1 e.g. $1 / 4+3 / 4$ e.g. $3 / 5+2 / 5$	Consolidate subtracting single and double digits using concrete and pictorial Use counting up as an informal written strategy for subtracting pairs of 3 -digit numbers eg (Tens) $40-10=30$ (anes) $8-5=3$ (Thal) $30+3=33$ (informal method) Introduce column subtraction (decomposition), initially with TU-TU (not regrouping) moving onto regrouping. To ensure understanding of place value, introduce through the expanded method before the compact method. $49-31=18$ $\begin{array}{llr} 40+9 & & 49 \\ \frac{-30+1}{10+8} & \text { leadingto } & -\underline{-31} \\ \hline \underline{18} \end{array}$ Begin to subtract like fractions $\text { e.g. } 7 / 8-3 / 8$	Consolidate subtracting single and doubledigits using concrete and pictorial Repeated addition number line Arrays $3 \times 5=15$ Begin to Use partitioning (grid multiplication) to multiply 2-digit and 3-digit numbers by 'friendly' 1-digit numbers 24×6	Consolidate subtracting single digits using concrete and pictorial $\begin{gathered} 20 \div 4=5 \\ 20 \\ \because \cdot \because \cdot!\cdot \end{gathered}$ I Link to number sentences and inverse $42 \div 2=21$ $21 \times 2=42$ introduce long division for TU $\div \mathrm{U}$ (no remainders) ONLY WHEN SECURE

Column addition for 3-digit and 4-digit numbers (expanded might help) (include decimals but only in the context of money) Add like fractions e.g. $3 / 5+4 / 5=7 / 5=12 / 5$ Be confident with fractions that add to 1 and fraction complements to 1 e.g. $2 / 3+{ }_{-}=1$	Use compact column subtraction for 3- and 4-digit numbers Use of a number line to look at finding change from money If I have 15 , and I aperd $\$ 3.25$, whet wowld I have left? Subtract like fractions e.g. $4 / 5-3 / 5=1 / 5$	Revise and practise the grid method (TUxU and HTU x U) Introduce expanded column method Move onto formal 'short multiplication' for TUxU and HTU xU $\begin{array}{r} 365 \\ \times \quad 2 \\ \hline \end{array}$	Use long division method to divide a 2-digit or a 3-digit number by a 1-digit number Give remainders as whole numbers $\begin{aligned} & 6)_{123}^{738} \\ & -600(6 \times 100)^{738 \div 6} \\ & -6138 \\ & -\quad 60(6 \times 10) \\ & =\quad 78 \\ & =\quad 18 \\ & =\quad 18 \times 10) \\ & -\quad 18(6 \times 3) \end{aligned}$ Short BUS STOP ONLY WHEN SECURE Begin to reduce fractions to their simplest forms Find unit and non-unit fractions of larger amounts

	Addition	Subtraction	Multiplication ${ }^{\text {a }}$	
$\stackrel{n}{\sim}$	Use column addition to add two or three whole numbers with up to 5 digits $\begin{array}{r} 27,234 \\ +85,479 \\ \hline 11,2713 \end{array}$ Use column addition to add any pair of 2place decimal numbers, (amounts of money) Begin to add related fractions using equivalences $\text { e.g. } 1 / 2+1 / 6=3 / 6+1 / 6$	Use column subtraction to subtract numbers with up to 5 digits Use complementary addition for subtractions where the larger number is a multiple or near multiple of 1000 If I hem t5. and I Mond E325, Elop $50 p+20 p+5 p=E 1.75$ Begin to subtract related fractions using equivalences e.g. $1 / 2-1 / 6=2 / 6$	Use short multiplication to multiply a 1-digit number by a number with up to 4 digits Use long multiplication to multiply 3-digit and 4-digit numbers by a number between 11 and 20 (before moving onto 21to 99) Find simple percentages of amounts e.g. $10 \%, 5 \%, 20 \%, 15 \%$ and 50% by dividing and multiplying Begin to multiply fractions and mixed numbers by whole numbers e.g. $4 \times 2 / 3=8 / 3=22 / 3$	Use long division to divide a number with up to 4 digits by a number Give remainders as whole numbers or as fractions Move onto short Bus stop method Find non-unit fractions of large amounts Turn improper fractions into mixed numbers and vice versa

